Performance per Watt Comparison

3dsmax 7

3dsmax, like many 3D renderers, absolutely loves more cores and here we see Kentsfield maintain a tremendous performance advantage over Conroe. The scores reported are the SPECapc 3dsmax rendering composite in points, higher numbers being better, but the most interesting values are the performance per watt numbers.

Note: we are looking at system power draw rather than trying to isolate just the CPU. In that sense, we are comparing potential of running quad core configurations - i.e. in render farms and the like - instead of more dual core systems. Were we to get just the CPU power usage numbers, we would expect the usage of two identical cores in a single package to basically double power draw.

CPU Performance
Average Power Consumption Performance per Watt
Intel Core 2 Extreme X6800 (2.93GHz) 4.11 pts 192.5W 0.0214 pts/W
Intel Core 2 Extreme QX6700 (2.66GHz) 6.59 pts 230.5W 0.0286 pts/W
Intel Core 2 Duo E6700 (2.66GHz) 3.77 pts 189.2W 0.0199 pts/W
Intel Core 2 Quad Q6600 (2.40GHz) 5.96 pts 225.9W 0.0264 pts/W
Intel Core 2 Duo E6600 (2.40GHz) 3.39 pts 184.4W 0.0184 pts/W
Intel Core 2 Duo E6300 (1.86GHz) 2.68 pts 176.1W 0.0152 pts/W
Intel Core 2 Single Core (2.40GHz) 1.85 pts 174.1W 0.0106 pts/W

With higher performance and higher power consumption, the two manage to balance out and result in better performance per watt out of the two Kentsfield based parts than any of the dual core CPUs. While Kentsfield does require more power than Conroe, you get an even larger increase in performance thus resulting in a more efficient overall CPU.

Let's see if this is the start of a trend...

Cinebench 9.5

The Cinebench 9.5 test is also a multithreaded 3D rendering benchmark that will take advantage of as many cores as are present in the system. For each core, Cinebench spawns an additional renderer to help speed up the rendering of a static scene. Performance goes up by over 60% when moving from two to four cores, but once again it's the performance per watt that is particularly interesting:

CPU Performance
Average Power Consumption Performance per Watt
Intel Core 2 Extreme X6800 (2.93GHz) 892 pts 189W 4.719 pts/W
Intel Core 2 Extreme QX6700 (2.66GHz) 1337 pts 225.1W 5.939 pts/W
Intel Core 2 Duo E6700 (2.66GHz) 816 pts 186.1W 4.384 pts/W
Intel Core 2 Quad Q6600 (2.40GHz) 1216 pts 219.8W 5.532 pts/W
Intel Core 2 Duo E6600 (2.40GHz) 751 pts 181.8W 3.973 pts/W
Intel Core 2 Duo E6300 (1.86GHz) 582 pts 175.4W 3.127 pts/W
Intel Core 2 Single Core (2.40GHz) 402 pts 172.2W 2.334 pts/W

None of the dual core CPUs can come close to touching the power efficiency of the quad core Kentsfield based offerings.

DivX 6.1

Media encoding applications were the first to get a performance boost from dual core CPUs, but the impact is not nearly as great when we move to quad core processors. There's a gain of around 38%, which is by no means bad, just simply not as great as what we saw in the previous 3D rendering tests. The end result is that performance per watt is a lot closer between the most efficient dual core CPUs and the new quad core offerings:

CPU Performance
Average Power Consumption Performance per Watt
Intel Core 2 Extreme X6800 (2.93GHz) 19.4 fps 189.2W 0.1027 fps/W
Intel Core 2 Extreme QX6700 (2.66GHz) 24.8 fps 223.7W 0.1108 fps/W
Intel Core 2 Duo E6700 (2.66GHz) 18.0 fps 185.7W 0.0968 fps/W
Intel Core 2 Quad Q6600 (2.40GHz) 24.0 fps 220.0W 0.1089 fps/W
Intel Core 2 Duo E6600 (2.40GHz) 16.3 fps 183.0W 0.0864 fps/W
Intel Core 2 Duo E6300 (1.86GHz) 13.8 fps 176.9W 0.0745 fps/W
Intel Core 2 Single Core (2.40GHz) 11.2 fps 170.7W 0.0658 fps/W

If we look at performance per watt per transistor, Kentsfield is really not doing well here at all, despite an increase in performance and a continued advantage in performance per watt.

Windows Media Encoder 9

We see a much stronger showing from Kentsfield in the WME9 test, indicating that the DivX test was not representative of all media encoding on quad core.

CPU Performance
Average Power Consumption Performance per Watt
Intel Core 2 Extreme X6800 (2.93GHz) 61.5 fps 189.1W 0.3252 fps/W
Intel Core 2 Extreme QX6700 (2.66GHz) 86.4 fps 223.2W 0.3870 fps/W
Intel Core 2 Duo E6700 (2.66GHz) 55.8 fps 184.5W 0.3025 fps/W
Intel Core 2 Quad Q6600 (2.40GHz) 78.9 fps 218.6W 0.3608 fps/W
Intel Core 2 Duo E6600 (2.40GHz) 50.4 fps 181.8W 0.2665 fps/W
Intel Core 2 Duo E6300 (1.86GHz) 39.4 fps 176.9W 0.2137 fps/W
Intel Core 2 Single Core (2.40GHz) 31.3 fps 171.7W 0.1822 fps/W

Quicktime (H.264)

Interestingly enough, our Quicktime H.264 test didn't show any performance improvement going from two to four cores, indicating that the encoding process is optimized for two threads. Quicktime thus becomes the posterchild for what's necessary for the multicore revolution to truly bring about greater power efficiency: better threading within applications.

CPU Performance
Average Power Consumption Performance per Watt
Intel Core 2 Extreme X6800 (2.93GHz) 30.0 fps 191.2W 0.1569 fps/W
Intel Core 2 Extreme QX6700 (2.66GHz) 27.5 fps 210.0W 0.1309 fps/W
Intel Core 2 Duo E6700 (2.66GHz) 27.5 fps 188.1W 0.1461 fps/W
Intel Core 2 Quad Q6600 (2.40GHz) 25.2 fps 207.0W 0.1216 fps/W
Intel Core 2 Duo E6600 (2.40GHz) 26.5 fps 185.1W 0.1430 fps/W
Intel Core 2 Duo E6300 (1.86GHz) 19.8 fps 177.7W 0.1113 fps/W
Intel Core 2 Single Core (2.40GHz) 16.2 fps 170.6W 0.0951 fps/W

Here the dual core offerings are clearly superior when it comes to performance per watt simply because the Kentsfield CPUs aren't able to outperform them, all while using more power. The efficiency wouldn't be a problem if Kentsfield was able to power down unused cores independently of one another.

iTunes MP3

Our final test is yet another benchmark that only spawns two encoding threads, and we get another example of how power efficiency falls off if the software is not threaded enough to match the CPU's resources.

CPU Performance
Average Power Consumption Performance per Watt
Intel Core 2 Extreme X6800 (2.93GHz) 11.7 MB/s 193.4W 0.0605 MBps/W
Intel Core 2 Extreme QX6700 (2.66GHz) 10.9 MB/s 213.1W 0.0509 MBps/W
Intel Core 2 Duo E6700 (2.66GHz) 10.5 MB/s 188.3W 0.0557 MBps/W
Intel Core 2 Quad Q6600 (2.40GHz) 9.8 MB/s 206.8W 0.0474 MBps/W
Intel Core 2 Duo E6600 (2.40GHz) 9.8 MB/s 185.4W 0.0529 MBps/W
Intel Core 2 Duo E6300 (1.86GHz) 7.6 MB/s 177.0W 0.0429 MBps/W
Intel Core 2 Single Core (2.40GHz) 6.1 MB/s 168.4W 0.0361 MBps/W
More Cores - The Ticket to Power Efficiency? Analyzing Efficiency Trends
Comments Locked

59 Comments

View All Comments

  • JarredWalton - Thursday, November 2, 2006 - link

    I am quite sure that 4x4 is for 1207 and not AM2. Sorry. I am also quite sure that 1207 will get quad core support, so long-term a 4x4 (dual dual core) can become... 4x8? (dual quad core). Anyway, in that sense it's just like Core 2 Duo and Quad.

    The questions I don't have answers to: will the 4x4 begin with a K8L chip, or just a tweaked K8? Will K8L be more competitive with Core 2? When will it finally come out? How much will it cost? Actually, I can sort of guess on the last point that 4x4 will cost a lot more than a Core 2 Quad config as you will need a more expensive mobo, RAM, and two CPU packages.

    I *think* Anand plans to have an article delving into 4x4 and AMD's plans more in the future. Maybe he's still gathering data from AMD? (Sort of like squeezing water from a dry spongue at times, unfortunately....)
  • johnsonx - Thursday, November 2, 2006 - link

    quote:

    more expensive....RAM


    I don't think you're right on that one; 4x4 CPU's will use the same RAM as AM2 CPU's do. The "more expensive RAM" requirement is only for Opterons, which of course use registered ECC memory. In fact, if your chosen mainboard has memory banks for both CPU's, then you could even save a little since 4 smaller DIMMs tends to cost a little less right now than 2 bigger DIMMs.
  • JarredWalton - Thursday, November 2, 2006 - link

    Except that like socket 940 vs. 939, I expect all 1207 boards to require registered DIMMs. I don't know of any dual socket board that doesn't.
  • Griswold - Thursday, November 2, 2006 - link

    The whole "catch" of 4x4 was that there are no ECC/Registered DIMMS required - at least that was the synopsis all the time. It should have very little to do with the socket itself, rather a matter of IMC, no?

  • Anand Lal Shimpi - Thursday, November 2, 2006 - link

    You're correct, 4x4 will use Socket-1207 CPUs but without Registered memory.

    Take care,
    Anand
  • JarredWalton - Thursday, November 2, 2006 - link

    I stand corrected, though I have to say I'm still not at all interested in getting a dual socket motherboard. LOL I guess 1207 CPUs will have to support both registered and unbuffered DIMMs? I can't imagine AMD trying to get people to make sure they get the right type of CPU for the RAM they're using.

    Second thought: could they have mobos and CPUs that will support both registered and unbuffered DIMMs? I think they have the same keying, so it's possible, right?
  • smilingcrow - Thursday, November 2, 2006 - link

    Two dual-core 90nm 120W CPUs = No thank you.
    Two quad-core 65nm xW CPUs = interesting!
  • Jedi2155 - Thursday, November 2, 2006 - link

    I'm personally a extremely heavy multi-tasker and I can't wait for quad to a hit a more managable price range. At the moment, they're just beyond my reach for a CPU alone. Once it hits around 300-500 then I would definitely buy one, but these right now are still for the rich and video encoders.
  • AlabamaMan - Thursday, November 2, 2006 - link

    I am still amazed by the fact that a $300 E6600 consistantly beats the $700 FX62
  • Aikouka - Thursday, November 2, 2006 - link

    That fact, my friend, is why I'm purchasing an E6600 in this upcoming week :). Simply the best performance without overclocking for the buck.

Log in

Don't have an account? Sign up now