Barcelona Architecture: AMD on the Counterattack
by Anand Lal Shimpi on March 1, 2007 12:05 AM EST- Posted in
- CPUs
A Faster Memory Controller
When AMD integrated a memory controller on-die, we knew that every time we saw a new AMD processor, we'd get a slightly enhanced memory controller. In Barcelona, the tweaks are significant and should provide for a tangible improvement in memory performance.
One strength of Intel's FB-DIMM architecture used in Xeon servers is that you can execute read and write requests to the AMB simultaneously. With standard DDR2 memory, you can do one or the other, and there's a penalty for switching between the two types of operations. If you have a fairly random mixture of reads and writes you can waste a lot of time switching between the two rather than performing all of your reads sequentially then switching over to writes. The K8's memory controller made some allowances for preferring reads over writes since they take less time, but in Barcelona the memory controller is far more intelligent.
Now, instead of executing writes as soon as they show up, writes are stored in a buffer and once the buffer reaches a preset threshold the controller bursts the writes sequentially. What this avoids is the costly read/write switch penalty, helping improve bandwidth efficiency and reduce latency.
The K8 core (Socket-940/939/AM2) featured a single memory controller that was 128-bits wide, but in Barcelona AMD has split up the DRAM controller into two separate 64-bit controllers. Each controller can be operated independently and thus you get some improvements in efficiency, especially when dealing with quad core implementations where the individual cores working on independent threads all have their own memory access patterns.
Barcelona's Northbridge is also set up to handle higher bandwidth than before. Deeper buffers are present, allowing for higher bandwidth utilization, and the Northbridge itself is ready for use with future memory technologies (e.g. DDR3). We'd expect one or two revisions past Barcelona will be when AMD switches memory technologies, but the new core will initially debut with DDR2 support.
When AMD integrated a memory controller on-die, we knew that every time we saw a new AMD processor, we'd get a slightly enhanced memory controller. In Barcelona, the tweaks are significant and should provide for a tangible improvement in memory performance.
One strength of Intel's FB-DIMM architecture used in Xeon servers is that you can execute read and write requests to the AMB simultaneously. With standard DDR2 memory, you can do one or the other, and there's a penalty for switching between the two types of operations. If you have a fairly random mixture of reads and writes you can waste a lot of time switching between the two rather than performing all of your reads sequentially then switching over to writes. The K8's memory controller made some allowances for preferring reads over writes since they take less time, but in Barcelona the memory controller is far more intelligent.
Now, instead of executing writes as soon as they show up, writes are stored in a buffer and once the buffer reaches a preset threshold the controller bursts the writes sequentially. What this avoids is the costly read/write switch penalty, helping improve bandwidth efficiency and reduce latency.
The K8 core (Socket-940/939/AM2) featured a single memory controller that was 128-bits wide, but in Barcelona AMD has split up the DRAM controller into two separate 64-bit controllers. Each controller can be operated independently and thus you get some improvements in efficiency, especially when dealing with quad core implementations where the individual cores working on independent threads all have their own memory access patterns.
Barcelona's Northbridge is also set up to handle higher bandwidth than before. Deeper buffers are present, allowing for higher bandwidth utilization, and the Northbridge itself is ready for use with future memory technologies (e.g. DDR3). We'd expect one or two revisions past Barcelona will be when AMD switches memory technologies, but the new core will initially debut with DDR2 support.
83 Comments
View All Comments
chucky2 - Friday, March 2, 2007 - link
Can you post the link that originates at AMD's own website then that says specifically that AM2+ CPU's are guaranteed to work - understandably maybe not supporting every new feature - in current AM2 boards?Not a news post from DailyTech, The Inquirer, Toms, whatever...one that's on AMD's site itself.
And No, AMD could make AM2+ completely incompatible with current AM2 boards and they probably wouldn't see much drop if at all from the large OEM's. The large OEM's would just ensure that when the AM2+ CPU's came in, AM2+ motherboards would likewise come in.
Believe me, I want to see the link...because I'm desperately awaiting 690G or MCP68, whichever comes first (which is probably MCP68 at the pace AMD is moving on 690G).
Chuck
yacoub - Thursday, March 1, 2007 - link
You say 128kb L1 per core but the diagram image just beneath that text shows a 64bit L1 cache. Please confirm which it is.
Thanks.
Awesome article, btw. Seems like quite a significant group of changes to the CPU. Looking forward to seeing how it stacks up against the best Quad Core2 Intel can offer. =)
yacoub - Thursday, March 1, 2007 - link
also, please forgive my hasty typing - I wrote "128kb" and "64bit" - I meant "128KB" and "64KB"JarredWalton - Thursday, March 1, 2007 - link
L1 is 128K total - 64K data and 64K instruction.Beenthere - Thursday, March 1, 2007 - link
AMD doesn't do knee-jerk reactions like Intel because AMD has superior products. AMD continues to take market share from Intel in every segment and Barcelona will continue that trend. Barcelona looks to be every bit as superior to Intel's hacked/patched/glued together chips as Opteron was when introduced. Intel's chips depend on huge cache size for their performance and that crutch won't work after the intro of Barcelona.For those without a clue, AMD didn't start design of Barcelona last week or last year. It's been in the development pipeline for many years and thr performance will demonstrate exactly why AMD's long term platform stability is the right choice for most enterprise buyers. Intel is gonna feel the pain again.
Roy2001 - Thursday, March 1, 2007 - link
Facts please, no BS.zsdersw - Thursday, March 1, 2007 - link
Idiocy incarnate.Regs - Thursday, March 1, 2007 - link
AMD, like Intel, start numerious projects. Just not all of them get to this finish line. Actually a lot of them don't even reach the end of the planning phase before being scratched.As for Intel and their large caches...well I'd say it's amazing how half their die (if not more) is used for cache and still had enough space for all the core logic that's kicking the crap out of the K8 now.
Common sense!
erwos - Thursday, March 1, 2007 - link
Looks like some good improvements coming down the pipe. The cache size issue makes me nervous, though - 512kb per core is starting to look a little antiquated, and there's no information about the bandwidth to the L3 cache (which, presumably, is slower than L2).SmokeRngs - Thursday, March 1, 2007 - link
In the past, AMD did not need the large cache sizes that Intel did for their processors. This was very obvious in regards to the Netburst architecture. However, while Core2 is much better than Netburst there are still disadvantages for Intel.I'll explain a little background as far as I understand it. In the K7 and Netburst days, Intel had to have the cache to make up for their long pipeline. Branch mispredictions are going to happen and the penalty on the long pipeline of the Netburst processors hurt their IPC badly. The shorter pipeline on the K7 did not have the same performance penalty due to the shorter pipeline. With K8, the on die memory controller also negated the need for large L2 caches due to the reduced latency when accessing main memory. This has been one of the major performance aspects for the K8 architecture.
The Core2 architecture obviously does not have the on die memory controller so the need for larger caches is still present and Intel sees improvement due to the larger caches. Barcelona still has the on die memory controller and the previous efficiency is still there and still negates the need for large caches. This is just the difference between architectures. While having a larger cache on the K8 did improve performance some in some usage scenarios, it wasn't on the same scale as the improvements Intel received with a larger cache.
AMD can't compete with Intel in regards to cache size. However, other architecture differences make up for the lack of large amounts of cache. Barcelona having a smaller cache does not seem to be a big problem. If it was a big problem, AMD probably would have gone with a larger cache to get the extra performance. Bigger does not always mean better or at least enough better to warrant the extra.
Smaller cache will mean fewer transistors which should mean better yields, lower power consumption and cheaper to produce.