SUN’s UltraSparc T1 - the Next Generation Server CPUs
by Johan De Gelas on December 29, 2005 10:03 AM EST- Posted in
- CPUs
The 8 little cores that could
Each core is pretty small, as it has only one pipeline, no Branch Prediction Unit, no OOO buffers, and no OOO pipeline stages, which search for independent instructions. Only the large register file and thread select logic make the very simple core a bit fatter and more complex.
An 8 KB data cache and 16 KB instruction cache give an L1-hitrate of 90% or less, but it also helps to keep each core small. To keep 8 cores with such tiny L1-caches running at 70% efficiency with so many threads, a big L2-cache and massive memory bandwidth is needed.
We have quantified this effect of faster cache coherency in our Linux database server article. A dual core Opteron was about 13% faster than two single core CPUs at the same clock speed. With 8 cores that might share data, cache coherency has an even bigger impact on performance. Sharing the L2-cache also ensures that no coherency traffic is necessary on the level 2 cache.
There is more. Each core has a modular arithmetic unit (MAU) that supports modular multiplication and exponentiation to speed up Secure Sockets Layer (SSL) processing. This compensates for the lack of the FPU and the low clock speed. A single 1.2 GHz MAU seems to "sign" as fast as a 1.8 GHz Opteron, but quite a bit slower at verifying authenticity.
Each core is pretty small, as it has only one pipeline, no Branch Prediction Unit, no OOO buffers, and no OOO pipeline stages, which search for independent instructions. Only the large register file and thread select logic make the very simple core a bit fatter and more complex.
An 8 KB data cache and 16 KB instruction cache give an L1-hitrate of 90% or less, but it also helps to keep each core small. To keep 8 cores with such tiny L1-caches running at 70% efficiency with so many threads, a big L2-cache and massive memory bandwidth is needed.
Fig 5: 8 cores fed by a 3 MB L2-cache and 4 integrated memory controllers. Source:SUN.
We have quantified this effect of faster cache coherency in our Linux database server article. A dual core Opteron was about 13% faster than two single core CPUs at the same clock speed. With 8 cores that might share data, cache coherency has an even bigger impact on performance. Sharing the L2-cache also ensures that no coherency traffic is necessary on the level 2 cache.
Fig 6: One (yellow) of the 8 cores (gray) of the T1. Source:SUN.
As a rough guideline, performance degrades if the number of floating-point instructions exceeds 1 percent of total instructions.Some instructions like division have long latencies, causing the thread to be skipped. The situation is then similar to a thread with a long latency load. To keep power consumption and die size per core low, each core has a very shallow six-stage pipeline: fetch, thread select, decode, execute, memory, and write back. The result is an architecture that does not need branch prediction, thanks to a shallow pipeline and FMT. However, this limits clock speed to 1.2 GHz in 90 nm, while competing chips are clocking between 2 and 4 GHz.
There is more. Each core has a modular arithmetic unit (MAU) that supports modular multiplication and exponentiation to speed up Secure Sockets Layer (SSL) processing. This compensates for the lack of the FPU and the low clock speed. A single 1.2 GHz MAU seems to "sign" as fast as a 1.8 GHz Opteron, but quite a bit slower at verifying authenticity.
49 Comments
View All Comments
sgtroyer - Wednesday, January 4, 2006 - link
Another fascinating article, Johan. It's fun to see Anandtech spending more time delving into architecture and non x86 processors, and doing more analysis and less benchmarking. Keep it up!Scarceas - Friday, December 30, 2005 - link
Remember the converse: Most cpus give up thread level performance...Remember the intended market...
Remember not all 32 threads have to come from one app...
Betwon - Friday, December 30, 2005 - link
Remember: Not come from one app... is not equal to parallel-well:It is possible that it is more slow(many apps work together at the same time) than work one by one.
a core have only 8KB L1, but have to be split for 4 threads to use.It is too few L1 for 4-thread!
Xeon have 16KB for 2 threads, POWER5 have 32KB for 2 threads.
"Most cpus give up thread level performance..." ?
Remember: The Xeon from Intel and POWER5 from IBM --both are multi-thread CPU.
Cerb - Friday, December 30, 2005 - link
Sun stands to gain quite a bit from this, but not really at the expense of IBM, AMD, or Intel. This is doing something that the other guys aren't trying to do, rather than competing against them at what they do well. It is not the future of desktop CPUs. It will not be even a good general-purpose server CPU. It takes a lot of data in, and pushes a lot of data out. A workload that hinges on doing that, without much actual work done to that data, is all it is made to do.It is basically a network appliance that happens to run generic programs on it. If you need that it offers, it will be Lord and Master of your rack. If you're not sure, you will pass it by; because you know that that Opteron over here can take anything you throw at it pretty well.
Betwon - Friday, December 30, 2005 - link
If all people think the your words is correct, SUN may cry.So small areas for it's apps.
Cerb - Friday, December 30, 2005 - link
Why would they cry? They even go to pointing out it's crap for FPU tasks (well, if you notice it lacking entirely in the whole of the PR stuff for it), and tasks with high ILP and IPC (where our mainstream CPUs excel). They also still have a full line-up of other servers, including those based on their own updated SPARCs. It appears their buzzword for this stuff here is 'throughput computing'. Their own brochure for this thing also clearly sell it for high TLP and large data workloads. For more general work, they've got Opterons, and the UltraSPARC IV+ does not appear to be a slouch.Let's look at their own "key applications":
* Web and application tier workloads
Lots of web server threads. Lots of DB threads. Simple integer logic.
* Multithreaded workloads
See above.
* Java application servers and Java Virtual Machines
They're sun. Regardless of how good it may or may not be here, they must market Java™. McNealy has to eat, you know :).
* Consolidated web servers
Basically the first one/two, but worded differently, to point out that it can do 2x as much web serving work as other servers in the rack with it, and maybe even more, while using little power.
* Infrastructure services (portal, directory, identity)
Data in, shuffle it, pump it out. Only slightly different than the rest so far (except Java).
* Enterprise applications (ERP, CRM, SCM business logic)
Again, mostly simple DB work where a lot of things may be going on at once, but plenty of them will really be separate from each other. What each task lags in will be made up for by being able to run another 30 at the same time.
Note that nothing like engineering, scientific simulations, etc., is on that list (things that do a lot of FPU work in parallel). It's basically web and DB said in different ways, and a plug for Java. In addition, their benchmarks look carefully chosen, but not cooked, like Apple's.
Betwon - Friday, December 30, 2005 - link
Just for web server/links, very local java apps?You think that the key of DB works and web server is the multi-thread-parallel performance.It seems that the multi-threads processor(such as P4 Xeon with HT and POWER5 with SMT) is more competitive than the single-thread processor(such as opteron).
Cerb - Friday, December 30, 2005 - link
Just for web server/links, very local java apps?No, not local java apps. Java is only there as marketing, because this is something Sun in trying to sell. Java probably works fine on it, but really has nothing to do with any of it, except that the same company is behind it and this chip.
You think that the key of DB works and web server is the multi-thread-parallel performance.It seems that the multi-threads processor(such as P4 Xeon with HT and POWER5 with SMT) is more competitive than the single-thread processor(such as opteron).
All of those are multithreaded processors. A 386 is a multithreaded processor (in fact, its ability to handle threading in hardware is part of how Linux got created!). However, except for the Power5, none of those can run more than a single thread at a time per core. They can run tons and tons of instructions at a time, but not separate threads (yes, even with HT).
I don't know how IBM's SMT works, but Intel's is nothing like what the T1 is doing. The T1 seems to be made to send out threads without regard to whether one needs replacing or not.
Let's say your task has an IPC of 3, and you have 4 paths to use at a time.
***0
Not bad, 75% used. Now, let's say it's only 1.
*000
25%, not so great. But, because you have to send them in sets of 4, you can't get 3 more in.
OK, now, enter Hyperthreading. Let's go to 2 of those 3-IPC tasks.
***0 ***0
Hey, wait, it didn't use that extra one. 75% again. With HT, it switches the whole thing between threads fast. This help make up for the stalling that will happen a fair bit on the Netburst chips. You can't actually get more done--you just don't have to wait as long when something can't go on, because another one is ready to take its place. yes, it may help a little, but there is also the possibility the CPU will get too loaded down and decrease performance, too.
So, apply that to two 1 IPC tasks.
*000 *000
You're still only using 25%, there. You may get a little boost here or there, when one stalls and the other does not, but you've still got about 3/4 of it wasted.
Now, let's take one core of that T1. It runs four threads, each single-width. So, to that 3 IPC task:
*000, *000, *000
One path of the four is used, going over it three times, because it can't span them out and run them in parallel. So, it will take 3 passes to do the work the others can do in 1. Even with a very short pipeline, that hurts. For this task, the 'fat' CPUs, like the Opteron, are excellent.
But, let's go and run 3 1 IPC tasks, instead:
***0
Now, it got 75% used. Now, running 3x 1 IPC tasks on the Xeon or Opteron:
*000, *000, *000
Not so great. The OoOE, branch prediction, and large local caches help, but it just can't keep up, because it's only one thread at a time.
While this is a very specific kind if workload, the majority of machines that you use on the internet, and many that you may use within a large company, are basically that kind of workload.
Get request for data.
Fetch data.
Check where data needs to go.
Send it there.
The thing about it is that this workload accounts for the majority of what goes on over the internet, and most other networks. As long as your servers have enough work to do during peak times to keep one of these machines somewhat busy, it could save rack space, power use, and increase performance in the process.
Hopefully I didn't screw too much of that up--I did ramble a bit.
Schmide - Saturday, December 31, 2005 - link
As always correct me where I’m wrong.Ok this all works fine if you’re dealing with a non-superscaler 386. But the processors you’re referring to are fully pipelined out of order micro-opp architectures.
I believe the Opteron can have 72 instructions in flight at any one given time, the Power something like 200(x2?), and the P4 126. Each in various levels of decode, process and write.
As for the thread level parallelism, it is in no way as granular as you portray it. Think more in milliseconds not ticks. I believe thread quantums (time slice) for windows are on the order of 30ms. So a 2gh processor task switch occurs, if the thread holds its slice for more than its allotted time, in 6mhz of ticks.
HyperThreading does by definition feeds the execution units from two threads at a time; however, this doesn’t ever reach the level of instruction level parallelism that you portray it just kind of fills in the gaps.
Each core of the Niagara can by theory achieve an ILP of 0.7. Multiply that by 8 and you get a theoretical 5.7 IPC. (but even the ItainumII never reaches the theoretical). Something always gets in the way.
I think the Niagara has some promise.
Betwon - Thursday, December 29, 2005 - link
How terrible for the single thread apps!NO branch prediction!
Someone must be crazy!